Systems Reference Library

IBM System/360 Operating System

Control Program Services

This publication describes +the use of
system macro-instructions that request the
supervisor, data management, and TESTRAN
services of the System/360 control program.
It also presents the 1linkage conventions
that have been established for use in the
System/360 Operating System.

File No. S360-36
Form C28-6541-1

0s

|

MAJOR REVISION (April, 1966)

This edition, Form C28-6541-1, obsoletes Form C28-6541-0 and all earlier
editions. In addition to incorporating information released in Techni-
cal Newsletters N28-2112 and N28-2113, significant changes have been
made to the section "Exceptional Condition Handling" and to the Queued
and Basic Indexed Sequential Access Methods. This new edition should be
reviewed in its entirety.

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© by International Business Machines Corporation, 1965, 1966

PREFACE

This publication explains how system macro-instructions are written
- to request the supervisor, data management, and TESTRAN services of the
control program portion of the System/360 Operating System.

The publication is divided into five principal parts: an introduc-
tion, descripticns of supervisor macro-instructions and services, des-
criptions of data management macro-instructions, descriptions of TESTRAN
macro-instructions and services, and several appendixes. The appendixes
include special reference material on operand forms, operand processing,
supplementary macro-instruction forms, dynamic program management,
external storage labels, standard status codes, control character codes,
and SYSOUT record format.

The introduction describes the various +types of system macro-
instructions, and explains the notation used in the illustrations of the
macro-instruction formats. The introduction also presents the linkage
conventions adopted for use in the System/360 Operating System. These
are the conventions used in passing control and information from one
program or subprogram to another; they are used in all interfaces
between the operating system and wuser programs. It is strongly
recommended that they be employed throughout user programs to simplify
programmer training and program maintenance.

PREREQUISITE PUBLICATIONS

Knowledge of information contained in the following publications is
required for an understanding of this publication:

IBM System/360 Operating System: Introduction, Form C28-6534

IBM System/360 Operating System: Concepts and Facilities, Form
C28-6535

IBM System/360 Operating System: Assembler Lanquage, Form C28-6514

IBM System/360 Operating System: Data Management, Form C28-6537

IBM System/360 Operating System: Linkage Editor, Form C28-6538

IBM System/360 Operating System: Job Control Language, Form C28-6539

Knowledge of the full capabilities and techniques of the macro-
language, as presented in the Assembler Language publication, is not
required for an understanding of this publication. Knowledge of the
basic assembler language, however, is required.

CONTENTS

SECTION 1: INTRODUCTION. & « « « « o« o o @ o s o o = o o s o o = =

System Macro-Instructions . + « « « o o o o o o o o o o . o o o o =
General INFOrmatione « « « « o o « o o o s o o s o a o o = o = =
Supervisor and Data Management Macro-Instructions
TESTRAN Macro-InStructionsS. « « « o« o o o = o o o o o o o @ =
PArameterSe « « « o » o o o s « s o a o s o o s s s o s o o o
The Macro LANGUAGE « « « « o o # o o o o = o s = o o s o = o o =
Macro-Instruction FieldS. « « « ¢ o« o o « o« o o o o o = o o o
Types of Macro-Instruction Operands . . - . « « ¢ o = « « = &
Basic Notation Used to Describe Macro-Instructions . . « « . . =
Operand Representation. « . « « « o ¢ o o o o o o o o = o o
Operands with Value Mnemonics . « « « =« « « « o o o =« « « « &
Coded Value OperandSe « « « « o« « o o o a = s o o o s o o o =«
MetaSymbolsS o « ¢ « o « o o o o o« o o s o o s o o o o o o & «
Types of Macro-Instructions.
R-Type Macro-Instructions . . « .« . .
S-Type Macro-Instructions « . « « « ¢ o o & « o ¢ o o o o <« &
Special Register Notation. « . ‘
Packed ParameterS « « « « o o o o s o o s o o o o o o s s o o

Linkage Conventions . « « « « & « ¢ o o o o o« w o 4 s s e o . . .
Linkage Terminology. =« - « s « = « a = o o s o s s s = o o = o =
Linkage TYPES: « « « = = o o 2 s o = s o « o o o = o = o o o o =
Linkage RegiSterS. « « « + o o o o o o o o o s o o o o o o o o =
Save AYEa USEe « o o o o o« o o « o s o s o s o« o o o o s o o o &

Register Saving and Restoring Responsibilities.
SAVE ATCA o « « o = o o o o o o o o o a o s s o s o o o o o =
Save Area Chaining. « o e e o 8 e s e e @ s e o e o e @
Calling Sequence and Entry Point Identifiers e e e e e s e e e e
Linkage Interface Respon31b111t1es . o
called Program Interface in Type I, Type II, and Certaln Type
IV LinkageSe « o « « o o o s o « a o = o o o s o s s o s o
Calling Program Interface in a Type I Linkage Resulting From
a Hand-Coded Calling Sequence. « e o % e s e e o o = @ .« .
Calling Program Interface in Type I, Type II, and Type III
Linkages Resulting From Supervisor and Data Management
Macro-Instructions
Passing Control Information to a JOb Stepe « « & o o o o o o o

Macro-Instruction DeSCriptionS. « « « « o « « o o o « = o o o o & =

SECTION 2: SUPERVISOR SERVICES ¢ &« « o e o s o o © s o o « o o = o
Simple Program Management. . « « « « « « « .
CALL -- Call a Program (S). « o« = « « « =

SAVE -- Save Register Contents. . « . « .
RETURN -~ Return to a Program . « « « « «
Overlay Program Management « « « « « « o o o o « o o o o o o o
CALL Macro-Instruction in Overlay Management. . . . <« « =«

¢« & o
.
.
.
.
.
.
.
.
L]

Branch Instruction in Overlay Management. . . <« . « « « « « =«
SEGLD -- Load Segment While Processing (R). « « « « o < « « &
SEGWT -- Load Segment Before Further Processing (R)
Dynamic Program Management . . . e« e 8 o s e e e e e s o e o o
LINK -- Link to a Load Module (S) « o e e . « o o a e o o s
XCTL -- Transfer Control to a Load Module (S) e e e e e e s e
LOAD -- Load and Retain a Load Module (R) . « + « « « « « o &
DELETE -- Delete a Retained Load Module (R) . . . « « « « « =
IDENTIFY -- Identify an Embedded Entry Point (R).

Main Storage Management. . « « « o ¢ o o o o 4 o o s e e o o o =

SECTION 3: DATA MANAGEMENT SERVICES . « ¢ o o o « o o«

Queued Sequential Access Method (QSAM)

GETMAIN -- Allocate Main Storage (R). « o« « ¢ o « « o o « =
GETMAIN -- Allocate Main Storage (S). . ¢ ¢ ¢ ©o o ¢ ¢ o = =
FREEMAIN -- Release Allocated Main Storage (R). « . « .« .
FREEMAIN -- Release Allocated Main Storage (S).

e o o 0

Task Creation and Management « e e e e e e e e .
ATTACH -- Create and Attach a Task (S). e o o e s 4 o o @
DETACH -- Remove a Task (R) e o e m e e e e e .
CHAP -- Change Dispatching Priority (R) w e e e e e e e e s
EXTRACT =-- Extract Selected TCB Fields (S). « « . « ¢« « . .

Task Synchronization « « « ¢ ¢ o ¢ ¢ o o o o o o o s s o o o o
WAIT -- Wait for Event (R). « « « « <«« .
WAITR -- Wait for Event and Ready Lower Prlorlty Task (R) .
POST -- Signal Event Completion (R) . . <« &« ¢ o & ¢ ¢ o . .
ENQ -- Engueue Request for a Serially Reusable Resource (R)
DEQ -- Dequeue Request for a Serially Reusable Resource (R)

Exceptional Condition Handling « « « « « o o o o o o o o o o =
SPIE -- Specify Program Interruption Exit (8)
STAE —-- Specify Task Abnormal Exit (R). « ¢ « « &« o o « «
ABEND -- Terminate a Task Abnormally (R). « « ¢ ¢ ¢ ¢ « ¢
CHKPT -- Checkpoint a Job Step (R)e v ¢ 4 e e o o o o o =

General Services . . . « o . e @ e o s e e e o s e e @
TIME -- Request Time and Date (R) e e e e e e s e e e e e .
STIMER -- Set Interval Timer (R). . « . « &« & o o « « =« « .
TTIMER -- Test Interval Timer (R) . <« o o ¢ o o « o « « « =
WTO —=— Write to Operator (S)e o v o « o o ¢ o o o o o o o o
WITOR -- Write to Operator with Reply (S). ¢« « ¢ ¢ ¢ o o « &
WTL -- Write to Log (S) o« o ¢« o o « o o o o o o o o s = o =

¢ & & & o

" s e 0

Direct Access Device Considerations « « « « v ¢ o o « o « « &
Volume SWitChinge « « « o ¢ o & o o o ¢ o o« o« © o o o o o o =
General Service Macro-Instructions« .
DCB -- Define a Control Block for Input/Output Operatlons .
DCBD —-- Provide Symbolic Names for a Data Control Block (DCB)
OPEN -- Prepare the Data Control Block for Processing (S) . .
CLOSE -- Disconnect Data Set from User's Problem Program (S).
FEOV -~ Force End of Volume (R) « & o ¢ ¢ o o ¢ « o o o « o «
GETPOOL -~ Get a Buffer Pool (R). ¢« ¢ ¢ ¢ ¢ v o o o o o = « =
FREEPOOL ~- Free a Buffer Pool (R}. « o «w o &« o o « o o o o @
BUILD -- Build a Buffer Pool (R). « e « o o o o o o
GETBUF ~-- Get a Buffer From a Pool (R). . . . «« .
FREEBUF -- Return a Buffer to a Pool (R)e « &« ¢ ¢ & o « o « &
DCB - Define Data Control Block for QSAM. e e o o o & = o
GET -~ Locate Made (R)e v o o o @ o o o o o o = o o = o o =
GET == MovVe MOAE (R)e « o o o o o o o o o o o o o o o o o =
GET -- Substitute Mode (R). ¢« ¢ ¢ o o o @ o o o = o o = o =
PUT —- Locate MOde (R)e o« o o« @ o o o o o o o o o = o o« « =
PUT —- Move MOAEe (R)e o o o ¢ @ o « o o o o o = o o s o o =
PUT —-- Substitute Mode (R)e « o ¢ o ¢ o o o o o o o o o o
PUTX -- Update Mode (R) o« « « o« « o ¢ o o o = o o o o o o =
PUTX -- Output Mode (R) « . . « « « o e e @ s e e o o o
RELSE -- Release an Input Buffer (R). e e e e e e e e e e
TRUNC -- Truncate an Output Buffer (R). « . '« . . o o . .
CNTRL -- Control a Printer or Stacker (R) c o e o o o o =
PRTOV -- Test for Printer Carriage Overflow (R) « ¢« ¢ « « &
Basic Sequential Access Method (BSAM). « v o o o o o o o o « o
DCB -- Define Data Control Block for BSAM . « « « « « « o« =«
READ -- Read @ BloCk (S)e ¢ ¢ e o e o o o o '« o o o o s o =
WRITE -- Write @ Block (S)e o v ¢ ¢ ¢ ¢ ¢ ¢« o o e o o o o =
WRITE -- Update a Block (S) v ¢ o & ¢ o ¢ o o o o o o o o »
CHECK -- Wait for and Test Completion of Read or Write

Operation (R)e o v v o o e o @ o o o o o o o o = = s« s o =
CLOSE (TYPE=T) =—- Temporarily Disconnect a Data Set from
Problem Program (S). « o o o o« o o o « o o o o« o o o o o @

NOTE =-- Provide Position Feedback (R) . ¢« ¢ « & o ¢ « o« &
POINT -- Position to a Block (R). ¢« v ¢ v v «¢ ¢ ¢ ¢ « « &
BSP -- Backspace @ Block (R)e ¢ ¢ ¢ ¢ o o o o o « o s o @
PRTOV -- Test for Printer Carriage Overflow (R)
CNTRL -- Control On-Line Input/Output Devices (R)
WRITE -- Create a Direct Organization Data Set - Format-F

Records (S)e o« o ¢ o o o o o @ e o o o o o &

WRITE -- Create a Direct Organization Data Set - Format-U

-V Records or a Capacity Record (S).
Basic Partitioned Access Method (BPAM)
Partitioned Data Orgamnization « « .
Partitioned Organization Directory Format . .
DCB -- Define Data Control Block for BPAM .

FIND -- Position to Member of Partitioned Data Set (R)

BIDL -- Build List (R). « e e e o @

-
.
.

STOW -- Manipulate Partitioned Data Set Directory (R)

Queued Indexed Sequential Access Method (QISAM).

DCB - Define Data Control Block for QISAM - Load Mode

QISAM Load Mode Buffer Requirements

PUT -- Move Mode (R). o ¢ o « o o o o o =5 o« o o o o =
PUT -- Locate Mode (R).« a o o
DCB -- Define Data Control Block for QISAM - Scan Mode
QISAM Scan Mode Buffer Requirements . . « « o « « « &
SETL -- Specify Start of Sequential Retrieval (R) . .
ESETL -- End Sequential Retrieval (R) . . « o « + o &
GET - Locate MOde (R)o - - « e - - - - - - - - - .« o
GET - Move MOde (R)- . e . - - - . - e e - - - - -
QISAM Scan Mode Work Area Requirements. « « « « o« o «
PUTX -- Update Mode (R) « « . & o o « & « o o o o @
RELSE - Release Current Input Buffer (R). « o e e o o
Basic Indexed Sequential Access Method (BISAM)
DCB -- Define Data Control Block for BISAM.
READ -- Retrieve a Logical Record (S) . « « o « o« « &
BISAM Area Requirements . .« ¢« ¢ ¢ o o o o o o o o o =
WRITE -- Write a Logical Record (S) . . . « e e e e
FREEDBUF -- Free Dynamically Obtained Buffer (R). . .
Basic Direct Access Method (BDAM). « ¢« ¢ ¢ o« o ¢ o o o &
DCB -- Define Data Control Block for BDAM . « « « « &
READ -- Read @ BloCk (S)e o o © o o o o o e o o o o @
WRITE -- Write @ Block (S)e « o « o o o ¢« s o o o o
RELEX -- Release Exclusive Control (R). . . « « . .
FREEDBUF -- Free Dynamically Obtained Buffer (R). . .
Queued Telecommunication Access Method (QTAM). o « « o «
Message Processing Routines e e = o & o o o
DCB -- Define QTAM Data Control Block e e e a o o o @
GET -- Obtain Next Record (R) « o« « « ¢ o « o o o o @
PUT -- Put Next Record (R)e « o o o o « o o o o o o @
SECTION 4: TESTRAN SERVICESe 2« « o 4 o s s s o = « « a o o

TESTRAN Operation .« « « « o o o « + o o « o &

TESTRAN Macro-Instruction Statement Format. .

TESTRAN Macro-Instructions. . . . « <« <« .« <«
Macro-Instruction Descriptions

.

e & &6 5 8 2 e 0 s 2 e &

¢ 8 & ¢ & s o s b

e & 8 o 8 s s

DUMP DATA -~ Record Main Storage.
DUMP CHANGES -- Record Main Storage and Identlfy Changes.
DUMP MAP -- Record Storage MapPe « « « « o o o o o o o« o a
DUMP TABLE =-- Record System Table . « « ¢ o o « o o o o o
DUMP PANEL -- Record Registers and PSW. « « « « ¢ o o« o «
DUMP COMMENT ~- Record COmMmMENte o« ¢ o o o o « o o o o o «
TRACE FLOW -~ Record Program Transfers. o e o o o .
TRACE CALL -- Record Execution of CALL Macro—Instructlons

TRACE REFER -- Record Storage References.

e & 8 & 8% & s 0 0 B o & 0 @

s & & & 2 & ¢ s 8 s s 8 s

172
174
175
176
177

179

.180
.182
.183
.183
.186
.189
.190
.192
.194
.194
.199
.200
203
.204
.206
«207
.209
.209
.210
.211
.211
.213
.213
.214
.218
.221
.222
.223
.224
.225
229
.233
.237
.238
239
.239
.239
.241
242

<243
.2uh
.245

.245
. 247
. 247
.2049
.251
.251
.252
.253
.253
.255
.256

TRACE STOP ~- Suspend TraceS. « « = « « o o o s o o«
TEST OPEN -- Initiate Testing « o e o @ M
TEST AT -- Perform Testing at Problem Program Addres;
TEST DEFINE -- Define Flags or Counters . . « « « . o

TEST WHEN -- Alter Test Sequence When Condition or
Relationship OCCUrS. . o v & ¢ 4 o o o 2 « o o o« o o

TEST ON -- Alter Test Sequence on Counter Interval. .
TEST CLOSE -- Terminate Testing « « « « « « o o « « o
GO TO -- Encounter TESTRAN Macro-Instruction.
GO IN -- Enter TESTRAN Subroutine . « « « « o o o o
GO OUT -- Return from TESTRAN Subroutine.
GO BACK -- Return to Problem Programe. . « « « o« o « «

SET FLAG -- Assign Condition to Flag. . « « « o « « «
SET COUNTER -- Assign Value to Counter. . . « « « .
SET VARIABLE ~- Assign Value to Storage or Register .
Notes on USAge « « « o o o o o o o o o o
Keyword Modifiers . « « o« o« o o o «
Address Specification
TEST OPEN Macro-Instructions. . . .
TEST CLOSE Macro-Imnstructions . . .
Editing Restrictions. . « . « « « .
Improperly Coded Macro-Instructions

& o o & s 0
e o & & 8 & o
LI T . L I]
® a2 & & o o
o & 8 o o &
o 8 & o & o
¢ a & o s @

s e o s o o

Edited Output FOrmats « « o « « 2 2 2 o o o « o o o
Standard Page Heading . . « o ¢ o o o o o o « &
Output Lines for DUMP DATA and DUMP CHANGES . .
Output Lines for DUMP MAP . . « « « « « o o o =
Output Lines for DUMP TABLE . v « « o o « « « «
Output Lines for DUMP PANEL . « <« o = o o o« « «
Output Lines for DUMP COMMENT
Initial Trace Output Lines. . .
Output Lines foxr TRACE FLOW .
Output Lines for TRACE CALL .
Output Lines for TRACE REFER.
Output Line for TRACE STOP. .
Output Lines for TEST OPEN. .
Output Line for TEST AT . . .
Output Line for TEST CLOSE.

e & s 3 » &

s i e & & 0 9
. L]
. .
. L]

@ & o .
. 8

« 2 2 a2 a s

[. L] .] L[] [

L] L] L] L[] . . . L] L]

L] L[] . . L] []

2 s 8 & a &

a ¢ o 2 s

.

Output Lines for Other Encountered Control Macro-Instructlons

Exrror Message Lines « « v « ¢ o o © o o o o a o« o o o
Sample Test Program and Test Output . . « v ¢ o« « « « o« « &
Job Organizatiom. « « o o o o ¢ ¢ o o o o o o o o o s o o @«
APPENDIX A: OPERAND FORMS. &« ¢ o o @ =« o o o » o« a « o o o

Descriptions of Operand Forms
Relocatable expression .
Implied Address. . « o« «
Explicit Address
Absolute Expression. . .
Register Notation. . . .
TESTRAN Register Notation.
Character Constant
Data Attribute Notation. .

s s s & &
S 2 & s o ¥ s 4 0
¢ o 8 & & & s s &
¢ o 82 ¢ o o 4 s &
s 8 @ @ 8 & o s b
2 o 2 & & & o o
s ¢ o o 8 s & s s
[) L] . L] . . . L[] []
L[] L] L] L] L] . » .
& @ & 8 s o s
a8 & & & o & s

.

)
. * . L] L] . L]

.

Operand ProCesSSinge = « o o o o o o o o o o o o a s o o o o
APPENDIX B: L AND E FORMS OF S-TYPE MACRO-INSTRUCTIONS . .
L- and E-Form Macro-EXPanSiONSe « o« o o s « o o o a o o« «

Use of L~ and E-~Form Macro-InsStructionsS . « « o « « o <« « &
The MF Keyword Operand « « « « o o o o o « o « « o« s « o

[}

257
.258
.260
.261

262
.263
265
265
.266
.266
267
.268
.269
.269
.270
.270
.273
273
274
.274
275

.275
<277
277
279
<279
.280
.281
.282
.283
.286
.287
290
.291
292
292
293
. 294

.294
.300
.303

.303
304
<304
.305
306
306
307
.308
.308

«309
.312
«312

.312
. 313

Operand Forms Used in L- and E-Form Macro-Instructions

Operand Combinations .« « « « « ¢ o © « o &
Ordinary and Special Operand Requirements.
APPENDIX C: DYNAMIC PROGRAM MANAGEMENT . . .
Contents Control.
Reusability. -
Libraries. . . « . -
Pack Areas . « « .« .« .
Contents Directory . . « e e s
Load Module Acquisition Procedures

. L] L] L] . L]
e 8 o 8 4
L . . L] . .

Use of the LOAD Macro-Instruction . « « « .« .
Reenterable Module From the Link Library

Reenterable Module From a Job Library or Private

Serially Reusable Module From Any Library.
NonReusable Module From Any Library. . . .

Use Of The Identify Macro-Instruction

s o o o s &

Library

Use of the LINK, XCTL, and ATTACH Macro-Instructions.

APPENDIX D: EXIT LIST DESCRIPTION. . « . . .

APPENDIX E:

Standard Magnetic Tape Labels
Volume Label Group « « « « « « « o =«
Initial Tape Volume Label Format.
Additional Volume Labels Format .
Data Set Header Label Group. . . o .
Data Set Header 1 Label Format. .« .
Data Set Header 2 Label Format. . .
User Header Label Group. . « « « ¢ « « « &
User Header Label Format. . « « « « « «
Data Set Trailer Label Group
User Trailer Label Group « . « « « « « « .

Direct-Access Volume Labels
Volume Label Group e e e
Data Set Control Block Group - .
User Header and Trailer Label Groups

APPENDIX F's:
Control CharacterS. « « o « o ¢ o « o « o o =«
Machine COA€. o o ¢ o ¢ o o « o o o s o o o &«
Extended ASA COAE€ v « o o ¢ o o o o = o o o =
SYSOUT WriteIS. « o o « o o o o s « o o o o
APPENDIX G: STANDARD STATUS INFORMATION. . .

INDEX @ 2 o 4 o o o o o & = o = s = o = o « =

CONTROL CHARACTERS AND SYSOUT WRITER

s & 8 & & &

SECONDARY STORAGE STANDARD LABEL FORMATS.

e o s o s o

3

-

-313
.314
.315

.317

.317
.317
.317
.318
.318
.319

.320
.320
.320
.321
.321

.321
.322
.323
.327
327
. 327
327
.328
.328
.328
.330
.331
.331
.331
.332
<332
.332
.332
.332
.333
.333
.333
.333
.330
.335

.337

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.

3.
4.

6.
7.
8.

FIGURES

Linkages in LINK Macro-Instruction Execution
Branching Instructions e o« o o 8 ow e o =
Format of the Event Control Block (ECB). . « « « « . &«
Format of the Queue Control Block (QCB). « .« .
Format of the Program Interruption Control Area (PICA)
Format of the Program Interruption Element (PIE) . . .
Sample Test Program. « « « o o o s o « o o s « = o « =
Sample Test Output « « « o o ¢ o o o o @ ¢ ¢ o o o o .

TABLES

Table 1. Use of Value Mnemonics by Groups of System
MAacro=INStrUCtiONS « « o o o o o o o o = « o o @ o o = o s o« o o o
Table 2. Linkage Registers o o o o« . e e e e e e o e
Table 3. Save Area Words and Contents in Calllng Programs. « o o .
Table 4. Services Affected by Including or Excluding Control

Program OptionS. « « « « o « = < =« e o o ® e © s 6 e o s e o o @
Table 5. Supervisor Actions Upon Subtask Termination « « « « « « «
Table 6. Data Management Exits e o e o o o e e o @

Table 7. Magnetic Tape Positions - QSAM and BSAM e e e e o o o e @
Table 8. Factors Determining Magnetlc Tape Positioning - QSAM and

BSAM . . e o e e e o @ o e« o o 8 e e e« o e 8 e o e e o o

Table 9. Buffering and Modes of GET-PUT. « o o « o o s o « « o o =

Table 10. DEN VAlU€S « « « « « o ¢ o« o o o o s o o = « o o o
Table 11. QSAM Buffer Acqulsltlon and Data Control Block Field
Requirements & . e« o o s e s s e ® o o a @ e e s o

Table 12. Error Options for QSAM e e 4« @ o o o e e s e e 2 s v e
Table 13. Register Contents Upon Entry to SYNAD Routine.
Table 14. Acceptable Record Formats and Corresponding Buffering
Techniques for QSAM and the PUTX Macro-Instruction « « « « « ¢ « o
Table 15. DEN Values . « « « o« o o o o o o =« = . .
Table 16. BSAM and BPAM Buffer Acquisition and Data Control Block
Field Requirements « « « « « o o o s = o « « o = « o s o o o o o =
Table 17. Format of the Data Event Control Block . « « « « - « « &
Table 18. Register Contents Upon Entry to SYNAD Routine.

Table 19. Magnetic Tape Temporary Positions - BSAM -

Table 20. QISAM Buffer Acquisition and Data Control Block Fleld
Requirements . « « « o o « o o ¢ o o « . . . o o

Table 21. Contents of Exceptional Condition (DCBEXCD) Fields of
Data Control Block -- QISAM Load and Scan Modes. o

Table 22. Register Contents Upon Entry to SYNAD - QISAM Load and
SCan MOAEBe « « « o « o o o o o o o o o s a s s o o o s o o o o o =
Table 23. Type Operand for SETL Macro-Instruction. . . « o o o
Table 24. BISAM Buffer Acquisition and Data Control Block Field
Requirements « « « « o ¢ o« o = « o o o o e @ o o w e @ e e @
Table 25. Format of Data Event Control Block for BISAM ¢« « « « « &
Table 26. Contents of Exceptlonal Condition Code Byte, Data Event

control Block - BISAM. « e e e e « e e o o o
Table 27. BDAM Buffer Acqulsltlon and Data Control Block Field
Requirements . . « . « « = e e s e @ e s e o s e s a4 = & s @

Table 28. Data Event Control Block fOr BDAM. o o o o o o o o o o =
Table 29. READ Macro-Instruction Type Operand Values for BDAM. . .
Table 30. Exception Condition Bits for BDAM. . . . « + « « & .« .
Table 31. WRITE Macro-Instruction Type Operand Values for BDAM .« .
Table 32. Message Type Byte Definition Chart

Table 33. Forms of the TESTRAN Macro-Instructions. . « « « « « - =
Table 34. Common Keyword Operands and Their Usage. . « « « « + « =
Table 35. Printing Formats for Data TypesS. . . .« « s s o s e o
Table 36. Job Control Statements Required for Assembly, Linkage
Editing, Program Testing, and Output Editing . . « « « « ¢ « o « .
Table 37. Operand Forms and Related Value Mnemonics. « . &
Table 38. Data Attribute Spe01flcatlons. e e s s o ® e o o o o s
Table 39. Program Management in Type II Linkages . . . « « « . « &
Table 40. Format and Contents of an Exit List. .« « « « ¢ « « « « &
Table 41. Control Program Response to an Edit Routine
RetUYl COAEC. ¢ o « o o o a s s o o = s s s s a o a s s o s o o o
Table 42. EXit LiSt. o« « ¢ o o o « = o o o s s o o = s s o o o o« =
Table U3. Label EXitS. « « « o o « o o o o o s o =« o o o o o s o =
Table 4. DEN VAlUES « 2 « o o o o v o s s o o o o s o o o o s o =

.125

.126
.133
.136

.139
.141
142

.151
.158

.162
.164
.170
.172

.198
.201

.203
.208

.217
.218

.219

.228
.229
.230
.232
.235
.242
246
.2047
.276

.300
.303
.309
322
.323

.324
.325
.326
.330

SECTION 1: INTRODUCTION

The control program provides a comprehensive set of services. These
services can be requested directly in a program written in the assembler
language, or indirectly in a program written in a higher level language.
This set of services is subdivided in this publication, as follows:

* Supervisor services, which provide linkage between programs, obtain
and release allocated main storage, manage tasks, set and test an
interval timer, etc.

e Data management services, which allow conventional and advanced
forms of processing of data sets existing on various types of
external storage devices. These services consist of several access
methods applicable to various data set organizations.

e TESTRAN services, which provide many convenient ways by which the
programmer can test and debug his program.

Some of the above services are provided by routines <that are an
integral part of the resident control program. The remainder are
provided by routines that are loaded into main storage by the control
program only when required.

SYSTEM MACRO-INSTRUCTIONS

Control program services are requested by means of system macro-
instructions included in the user's problem program.

GENERAL INFORMATION

System macro-instructions are processed by the assembler program
using macro-definitions supplied by IBM and placed in the macro-library
at system generation time.

The processing of a macro-instruction by the assembler is called the
expansion of the macro-instruction. This processing results in fields
of data and executable instructions, called the macro-expansion.
Elements of a macro-expansion are referred to in terms of their
assembler language statement equivalents.

Supervisor and Data Management Macro-Instructions

The macro-expansion of a supervisor or data management macro-
instruction is in-line in the wuser's problem program. The macro-
expansion contains either a supervisor call (SVC) instruction or a
branch instruction, which gives control to the control program routine
that 1is to perform the requested service. At execution time, the
macro-expansion passes fields of information to the control program
routine to specify the exact nature of the service to be performed.
These data fields are called parameters; they are passed in either
registers or a data area, as follows:

Section 1: Introduction 11

e In certain macro-instructions, parameters are passed in registers
called parameter registers. The macro-expansion can contain load
address (LA) instructions that form parameters in parameter
registers at execution time, and it can contain instructions that
load parameter registers from registers loaded by the user's problem
program. = The user's problem program can also 1load parameter
registers directly. Registers 0 and 1 are used as parameter
registers.

s In macro-instructions that do not pass parameters in registers,
parameters are passed in a data area called a parameter list.
Parameters can be assembled in the list as constants, and they can
be stored in the list by the macro-expansion from registers loaded
by the user's problem program. The macro-expansion loads register 1
or 15 with the address of the list, and the control program routine
uses this register to refer to the list. 1In this use, register 1 or
15 is called the parameter list register.

TESTRAN Macro-Instructions

The macro-expansion of a TESTRAN macro-instruction is out-of-line in
a special control section that consists of a single SVC instruction
followed by a series of constants. When this control section is given
control at execution time, TESTRAN service routines are fetched into
main storage and the macro-expansions contained in the control section
are interpreted. The service routines, collectively called the TESTRAN
interpreter, insert SVC instructions in the user's problem program as
designated by the macro-expansions. The TESTRAN interpreter saves the
displaced user's instructions for execution in their proper sequence.
The user's problem program is then resumed. When inserted SVC instruc-
tions are subsequently executed, the macro-expansions are again inter-
preted and the requested services are performed.

Data produced by TESTRAN macro-instructions is passed to the TESTRAN
editor, a processing program that edits and prints data in the format
defined by the source program.

Parameters

Each parameter resulting from the expansion of a supervisor or data
management macro-instruction is either an address or a value; this is
true whether the parameter is in a register or a list.

ADDRESS PARAMETER: An address parameter is the standard 24-bit address.
It is always located in the three low-order bytes of either a parameter
register or a full-word in a parameter list. The full-word in the
parameter list is aligned on a full-word boundary.

The high-order byte in either the parameter register or the full-word
in the parameter list contains all zeros. BAny exceptions to this rule
are stated in individual macro-instruction descriptions.

An address parameter is always an effective address. The control
program is never given a 16- or 20-bit explicit address (of the form
D(B) or D(X,B)) and then required to form an effective address. If an
effective address must be formed dynamically, it is formed either by the
macro-expansion or before the macro-instruction is issued.

12

VALUE PARAMETER: A vdlue parameter is a field of data other than an
address. It is of variable length, and is usually in the low-order bits
of either a parameter register or a full-word in a parameter list. The
full-word in the parameter list is aligned on a full-word boundary.
Unless explicitly stated otherwise, a parameter has binary format.

The high-order wunused bits in either the parameter register or the
full-word in the paranmeter list contain all zeros. Any exceptions to
this rule are stated in individual macro-instruction descriptions.

Certain value parameters are placed in a register or a full-word
along with another parameter, which can be either an address or a value
parameter. In this case, a value parameter will be in other than the
low-order bits. Two parameters in the same register or full-word are
called packed parameters. .

Certain value parameters are longer than a full-word. For example, a
parameter might consist of the characters of an eight-character symbol,
or it might consist of eight unpacked ‘decimal digits. This kind of
parameter is passed to the control program only in a parameter list.

OPERANDS: Parameters are specified by operands in the macro-
instruction. An address parameter can result from a relocatable
expression or, in certain macro-instructions, from an implied or
explicit address. A value parameter can result from an absolute

expression or a specific character string. 2address and value parameters
can both be specified by operands written as an absolute expression
enclosed in parentheses; this operand form is called register notation.
The value of the expression designates a register into which the
specified parameter must be loaded by the user's problem program. The
contents of this register are then placed in either a parameter register
or a parameter list by the macro-expansion.

THE MACRO LANGUAGE

Certain of the rules for writing system macro-instructions, and the
terminology used, are discussed in the following paragraphs. This
information is partly a subset of that in the publication IBM Operating
System/360: Assembler Lanquage, but contains certain rules that apply to
only the system macro-instructions.

Macro-Instruction Fields

System macro-instructions, like assembler instructions, are written
in the following general format:

r T L —
| Name | Operation | Operand |
r t -4 -- -4
| A symbol | Mnemonic | Zero or more operands separated by commas |
| or blank | operation |]
| | code | |
L L 1 -4

The name field of the macro-instruction can contain a symbol. A

symbol written in this field can be used to refer to the first assembler
language statement (other than a CNOP) resulting from the macro-
instruction.

Section 1: Introduction 13

The operation field contains the mnemonic operation code of the
macro-instruction.

The operand field can contain a list of operands separated from one
another by commas. . The operands, in conjunction with the mnemonic
operation code, specify the particular service requested by the macro-
instruction.

If a macro-instruction format permits a blank operand field, any
comment must be preceded by a comma followed by a blank in order to
delimit the operand field.

Types of Macro-Instruction Operands

The programmer writes operands in a system macro-instruction to
specify the exact nature of the service to be performed. When the
macro-instruction is processed by the assembler program, operands result
in such elements of the macro-expansion as:

e Either a constant parameter or executable instructions that form a
parameter at execution time. This occurs in supervisor or data
management macro-instructions.

e A constant in a special control section. This occurs in TESTRAN
macro-instructions.

Operands are of two types: positional and keyword.

POSITIONAL OPERANDS: A positional operand is written as a string of
characters. This character string can be an expression, an implied or
explicit address, or some special operand form allowed in a particular
macro-instruction. (Refer to "Operand Representation.")

Positional operands must be written in a specific order. If a
positional operand is omitted and another positional operand is written
to the right of it, the comma that would normally have preceded the
omitted operand must be written. This comma should be written only if
followed by a positional operand; it should not be written if it would
be followed by a keyword operand or a blank.

In the following examples, EX1 has three positional operands. In
EX2, the second of three positional operands is omitted, but must still
be delimited by commas. In EX3, the first and third operands are
omitted; no comma need be written to the right of the second operand.

EX1 EXAMP A,B,C
EX2 EXAMP A, ,C
EX3 EXAMP +«B

KEYWORD OPERANDS: A keyword operand is written as a keyword immediately
followed by an equal sign and an optional value.

A keyword consists of one through seven letters and digits, the first
of which must be a letter. It must be written exactly as shown in a
macro-instruction description.

An optional value is written as a character string in the same way as
a positional operand.

Keyword operands can be written in any order, but they must be
written to the right of any positional operands in the macro-
instruction.

14

In the following examples, EX1 shows two keyword operands. EX2 shows
the keyword operands written in a different order and to the right of
positional operands. In EX3, the second and third positional operands
are omitted; they need not be delimited by commas, because they are not
followed by any positional operands.

EX1 EXAMP KW1=X,KW2=Y
EX2 EXAMP A,B,C,KW2=Y,KW1l=X
EX3 EXAMP A,KW1=X, KW2=Y

OPERAND SUBLISTS: A positional operand or the optional value of a
keyword operand can be written as a sublist, if this is specified by a
particular macro-instruction description.

A sublist consists of one or more operands, of the form of a
positional operand, separated by commas and enclosed in parentheses.
The entire sublist, including the parentheses, is considered to be one
positional operand or the optional value of a keyword operand. For
example:

(A,B,C)
(R)
KWl=(A,B,C)

Note that, in the second example above, the sublist consists of only
one operand.

When a supervisor or data management macro-instruction description
shows that an operand or optional value is to be written as a sublist,
the enclosing parentheses must be written, even if there is only one
element in the sublist. The parentheses that designate a sublist are in
addition to parentheses used in register notation.

When a TESTRAN macro-instruction description shows that an operand or
optional value is to be written as a sublist, the programmer can either
write the enclosing parentheses or omit them when there is only one
element in the sublist. This is because the form of register notation
used in TESTRAN macro-instructions is different from the form used in
supervisor and data marnagement macro-instructions.

REQUIRED AND OPTIONAL OPERANDS: Certain operands are required in a
macro-instruction, if the macro-instruction is to make a meaningful
request for a control program service. Other operands are optional, and
can be omitted. Whether an operand is required or optional is indicated
in the macro-instruction descriptions.

BASIC NOTATION USED TO DESCRIBE MACRO-INSTRUCTIONS

System macro-instructions are presented in this publication by means
of macro-instruction descriptions, each of ° which contains an
illustration of the macro-instruction format. This illustration is
called a format description. BAn example of a format description is as
follows:

r i T - T 1
| Name | Operation | Operand |
L [l 1 N ¥
1) T 1 1
| (symboll | EXAMP | name,-value mnemonic,name,-CODED VALUE |
| | | +»CODED VALUE |
| | | +KEYWD1l=value mnemonic,KEYWD2=CODED VALUE |
L -4 L —_— 4

[y
v

Section 1: Introduction

Operand representations in format descriptions contain the following
elements:

e An operand name, which is a single mnemonic word used to refer to
the operand. 1In the case of a keyword operand, the keyword is the
name. In the case of a positional operand, the name is merely a
referent, or it is a coded value (see below). In the above format
description, mname;, name,, CODED VALUE (in the third operand),
KEYWORD1, and KEYWORD2 are operand names. :

e A value mnemonic, which is a mnemonic used to indicate how the
operand should be written, if it is not written as a coded value.
For example, addr is a value mnemonic that specifies that an operand
or optional value is to be written as either a relocatable
expression or register notation.

» A coded value, which is a character string that is to be written
exactly as it is shown. For example, TASK is a coded value.

The format description also specifies when single operands and
combinations of operands should be written. This information is
indicated by notational elements called metasymbols. For example, in
the preceding format description, the brackets around symbol in the name
field indicate that a symbol in this field is optional.

Operand Representation

Positional operands are represented in format descriptions in one of
three ways:

e By a three-part structure consisting of an operand name, a hyphen,
and a value mnemonic. For example: name,;-addr.

e By a three-part structure consisting of an operand name, a hyphen,
and a coded value. For example: name,-TASK.

e By a coded value. For example: TASK.

Keyword operands are represented in format descriptions in one of two
ways:

e By a three-part structure consisting of a keyword, an equal sign,
and a value mnemonic. For example: KEYWDl=addr.

e By a three-part structure consisting of a keyword, an equal sign,
and a coded value. For example: KEYWD1=TASK.

The most significant characteristic of an operand representation is

whether a value mnemonic or a coded value is used; these two cases are
discussed below.

Operands with Value Mnemonics

When a keyword operand is represented by:
KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign, and then a
value of one of the forms specified by the value mnemonic.

16

When a positional dperand is represented by:
name-value mnemonic

the programmer writes only a value of one of the forms specified by the
value mnemonic. The operand name is merely a means of referring to the
operand in the format description; the hyphen simply separates the name
from the value mnemoniic. Neither is written.

The following general rule applies to the interpretation of operand
representations in a format description: when the operand is written,
anything shown in upper-case letters must be written exactly as shown;
anything shown in lower-case letters is to be replaced with a value
provided by the programmer. Thus, in the case of a keyword operand, the
keyword and equal sign are written as shown, and the value mnemonic is
replaced. In the case of a positional operand, the entire operand
representation is replaced.

VALUE MNEMONICS: The value mnemonics listed below specify most of the
allowable operand forms that can be written in system macro-
instructions. Other value mnemonics, which are rarely used, are defined
in individual macro-instruction descriptions.

e symbol - the operand can be written as a symbol.

® relexp - the operand can be written as a relocatable expression.
* addr - the operand can be written as (1) a relocatable expression,

or (2) register notation designating a register that contains an
address in its three low-order bytes and all-zeros in its high-order
byte. Register notation is written as an absolute expression that
begins with a left parenthesis and ends with a right parenthesis.
(These parentheses are not necessarily paired.) The value of the
absolute expression is the number of the designated register. The
designated register must be one of the registers 2 through 12,
unless special register notation is used. (Refer to "Special
Register Notation.™)

* addrx - the operand can be written as (1) an indexed or nonindexed
implied or explicit address, or (2) register notation designating a
register that contains an address in its three low-order bytes and
all-zeros in its high-order byte. An explicit address must be
written as in the RX form of an assembler language instruction.

e addx - the operand can be written as an indexed or nonindexed
implied or explicit address. An implied address cannot be written
as a literal. An explicit address must be written as in the RX form
of an assembler language instruction.

e adval - the operand can be written as (1) an indexed or nonindexed
implied or explicit address, or (2) TESTRAN register notation for a
register that contains a value. TESTRAN register notation is
written as the letter G (for general register) or the letter F (for
floating-point register) followed by an absolute symbolic term, or
an integer, enclosed in single quotation marks. The value of the
symbolic term or integer is the number of the designated general or
floating-point register. There is no restriction on which register
is designated. An explicit address must be written as in the RX
form of an assembler language instruction. (If an implied address
is written as a: literal, the address will refer o a constant
contained in the macro-expansion.)

¢ integer - the operand can be written as an integer (a decimal
self-defining term).

Section 1: Introduction 17

e absexp - the operand can be written as an absolute expression.

e value - the operand can be written as (1) an absolute expression, or
(2) register notation designating a register that contains a value
in its low-order bits and all-zeros in its unused high-order bits.

e text - the operand can be written as a character constant as in a DC
data definition instruction. (The format description shows
explicitly that the character constant is to be enclosed in single
quotation marks.)

e code - the operand can be written as one of a large set of coded
values; these values are defined in the macro-instruction descrip-
tion.

e tls -~ the operand can be written as data attribute notation. Data
attribute notation is written as the type and modifier subfields “of
a DC or DS data definition statement, and specifies type, length,
and/or scale attributes for data processed by the TESTRAN interpret-
er and editor.

The subset of value mnemonics used by each group of system macro-
instructions, and the wuse of the corresponding operands, is shown in
Table 1.

Table 1. Use of Value Mnemonics by Groups of System Macro-Instructions

r - - -1
| Group of System Macro-Instructions |
| Operand Use t T T 4
| | Supervisor |Data Management | TESTRAN |
L 1

F $—-- p—m - - -
Specifies an	symbol	symbol	symbol
address	relexp	relexp	relexp
	addr	addr	
	addrx	addrx	
		I addx I	
	I	adval	
1	I, + i		
r R . T i T . 1			
Specifies a	integer		integer
wvalue	absexp	absexp	
	value	value	
			adval I
8 4 !	b		
[3 . . T ¥ T A			
Specifies other			symbol
informatiom	text		text i
[1	tls [
	code	code	
L 1 L — 4

Additional information on operand forms and operand processing is
given in Appendix A.

The following example illustrates the use of value mnemonics in a
format description:

r T] 1
| Name | Operation | Operand |
b + + 1
| [symboll | EXAMP | name;-symbol, name,-addrx, KEYWDl=absexp |
{ 1 1 +KEYWD2=value !

18

Each of the four operands shown can be written in any one of the
forms specified by its value mnemonic.

In the following examples, the macro-instructions are written as
directed by this format description.

In EX1, the name, operand is a symbol, the name, operand is an
implied address, and the KEYWD1l and KEYWD2 optional values are absolute
expressions.

In EX2, the name, operand is an indexed implied address.

In EX3, the name, operand is an explicit address, and the KXEYWD2
optional value is register notation. When the macro-instruction is
issued, register 10 should contain the parameter specified by the KEYWD2
operand.

EX1 EXAMP ALPHA,PAYROLL+8,KEYWD1=25, KEYWD2=100
EX2 EXAMP ALPHA,PAYROLL+8 (5) ,KEYWD1=W50, KEYWD2=4*W50
EX3 EXAMP ALPHA,40(0,5) ,KEYWD1=W50, KEYWD2=(10)

Coded Value Operands

Some operands are not represented in format descriptions by value
mnemonics. Instead, they are represented by one or more upper-case
character strings that show exactly how the operand should be written.
These character strings are called coded values, and the operands for
which they are written are called coded value operands. '

A coded value operand results in either a specific value parameter or
a specific sequence of executable instructions.

When a positicnal operand can be written as only one coded value, the
operand is shown simply as the coded value; an additional lower-case
operand name is not used. For example, a positional operand could be
represented by:

TASK
A keyword operand could be represented Ly:
KEYWORD=TASK

If a positional operand can be written as any one of two or more
coded values, an additional lower-case operand name may or may not be
used. The choice of which is done is determined by whether or not a
name can be meaningfully used to refer to all values of the operand.
For example, a positional operand could be shown as either of the
following:

{TASK|REAL}
mode- { TASK| REAL}

In both of the above examples, the braces indicate that the coded
values are grouped together in one operand representation, and the
vertical stroke indicates that either one of the coded values can be
written. The braces and vertical strokes are metasymbols.

Section 1: Introduction 19

Metasymbols

Metasymbols are symbols that convey information to the programmer,
but are not written by him. They assist in showing the programmer how
and when an operand should be written. The metasymbols used in this
publication are:

1. | This is a vertical stroke and means "or." For example, A|B
means either the character A or the character B. Alternatives are
also indicated by being aligned vertically (as shown in the next
paragraph).

2. { } These are braces and denote grouping. They are used most
often to indicate alternative operands. For example:

{TASK|REAL}

TASK

REAL
The two examples above are equivalent; either TASK or REAL must be
written.

3. [1 These are brackets and denote options. Anything enclosed in
brackets can be either omitted or written once in the macro-
instruction. For example:

[TASK]

[TASK | REAL]

TASK

REAL
The second and third examples above are equivalent; TASK, or REAL,
or neither can be written. The underlining indicates that, if
neither is written, TASK is assumed. Braces wused for grouping

inside brackets are redundant.

e ... This is an ellipsis. It denotes occurrence of the preceding
syntactical unit one or more times in succession. A syntactical
unit is any combination of operand representations, commas ,

parentheses, and metasymbols, enclosed in braces. For example:
{symbol,}...

The above example indicates that a symbol followed by a comma can

be written any number of times, but it must be written at least

once. The braces denote grouping, and are the extremities of the

syntactical unit to which the ellipsis refers. ‘

The following example shows metasymbol use in a format description:

T

‘Name Operation | Operand

EXAMP | ({abc~addr, [def-{TASK|REAL}],}...)
L

[{symboll

o e oy —
- — - —

e e

- ————

The enclosing parentheses specify a sublist.

20

The outer pair of braces followed by the ellipsis indicates that the
sublist can consist of one or more occurrences of the syntactical unit
bounded by the braces.

The comma to the lefit of the rightmost brace is required to make the
format description correct (since all operands except the first must be
preceded by a comma). A trailing comma is unnecessary and must not be
written.

The brackets indicate that the def operand within them is optional.
If the def operand is used, it is written as either TASK or REAL.

The comma to the lefit of the leftmost bracket is not enclosed by the
bracket, because it must be written if any positional operand is written
to the right of it. For example, the operand field might ccntain:

(DCB1,,DCB2)

indicating that two abc¢ operands, DCB1 and DCB2, are written with no def
operands.

TYPES OF MACRO-INSTRUCTIONS

Most supervisor and data management macro-instructions are referred
to as being either R type (register) or S type (storage). An R-type
macro-instruction passes parameters to the control program by means of
parameter registers; an S-type macro-instruction passes them by means of
a parameter list.

A few supervisor and data management macro-instructions do not pass
control to the control program. For example, the SAVE macro-instruction
results in instructions in the user's problem program that completely
perform the requested service. Similarly, the DCB macro-instruction
results in only a data area containing constant parameters. These
macro-instructions are neither R type nor S type; they are referred to
simply as macro-instructions.

R-Type Macro-Instructions

An R-type macro-instruction is wused when only one, two, or threel
parameters are to be passed to the control program. The parameters are
passed in register 0 or 1, or both. This results in good performance
because:

e A typical ER-type macro-expansion consists of fewer executable
instructions than would be required if the one to three parameters
were passed in a list.

e The user's problem program can often be written so that parameters
already exist in registers when the macro-instruction is issued. 1In
this case, instructions that refer to storage are not required in
the macro-expansion. If a parameter exists in a register other than
a parameter register, a load register (LR) instruction that 1loads
the correct parameter register is part of the macro-expansion.

iWwhen an R-type macro-instruction has three parameters, two or three of
them can be packed into one parameter register. (Refer to "Packed
Parameters.")

Section 1: Introduction 21

(Note that if the register contains the address of data, a load
instruction is part of the macro-expansion.)

hddress operands can be written in R-type macro-instructions as
implied or explicit addresses, or by using register notation.

S-Type Macro-Instructions

An S-type macro-instruction is used when three or more parameters are
to be passed to the control program. In this case, the parameters are
passed in a parameter 1list. This allows the macro-instruction to be
used with no noticeable effect on the contents of most of the registers
used by the user's program. (The contents of registers 2 through 13 are
not disturbed. Register conventions are described in "Linkage Conven-
tions.") The system macro-instructions pass three or more parameters by
list rather than by register because, if large numbers of parameters
were passed by registers, the user's problem program might need
instructions to save register contents before execution of such a
macro-instruction, and then to restore them afterwards.

Use of S-type macro-instructions simplifies the writing of programs.
The programmer need not know the identities of registers used by
macro-instructions, and he need not plan ahead to achieve the optimum
position of parameters in registers.

Address operands in the standard form of S-type macro-instructions
can be written only as relocatable expressions or by using register
notation. However, implied and explicit addresses can be written if
nonstandard forms of the macro-instructions are used; these are called
the L and E forms.

The L. and E forms of S-type macro-instructions allow a single
parameter list to be used by two or more macro-instructions that request
the same general control program service. The parameters in the 1list
can be modified to request a specific service each time a macro-
instruction is executed. The L and E forms also allow an S-type
macro-instruction to be used in a reenterable program even when its
parameter list is modified at execution time. Refer to Appendix B for
more information about these macro-instruction forms.

SPECIAL REGISTER NOTATION

If an operand of an R-type macro-instruction is written using
register notation, the resulting macro-expansion loads the parameter
contained in the designated register into either parameter register 0 or
parameter register 1.

For example, if an operand is written as (R45), and if the
corresponding parameter is to be passed to the control program in
register 0, the macro-expansion could contain the instruction
LR 0, (R45), or L 0,0(0,R45), or L 0,0(RU5,0). (The parentheses are not
always removed in the macro-expansion. They have no effect on the
action of the assembler program.)

The wuser's problem program can load parameter registers directly,
before execution of the macro-expansion; this is called preloading. The
programmer specifies that preloading will occur by writing an operand as
either (0) or (1); this is called special register notation.

22

This notation is special for two reasons:

e The register notation designation of registers 0 and 1 is generally
not allowed.

e The designation must be made by the specific three characters (0) or
(1), rather than by the general form of an absolute expression
enclosed in parentheses. For example, even though the absolute
expression RU45 could be equated to 0, (R45S) must not be written
instead of (0) when special register notation is intended. If this
were done, the macro-expansion would at least contain a useless
LR 0, (R45) instruction; in certain cases, the macro-expansion would
contain an undesired L 0,0(0,R45) (or L 0,0(R45,0)) instruction, and
would result in an improperly loaded parameter register.

The format description of an R-type macro-instruction shows whether
special register notation can be used, and for which operards. This is
demonstrated by the following format description:

T
Name Operation | Operand

EXAMP | Jabec-addrx{,| def-addrx
1 1L (0)

L

[symbol]

R
TP S——
N S

Both operands can be written in the addrx forms, and therefore can be
written using register notation. Ordinary register notation indicates
that the parameter register should be 1loaded from the designated
register by the macro-expansion. The format description also shows that
the abc operand can be written as (1), and the def operand can be
written as (0). If either of these special register notations is used,
the user's problem program must have loaded the designated parameter
register before execution of the macro-instruction.

Special register nodtation can also be used to write the optional

value of a keyword operand. The operand appears in a format description
as shown in the following example:

ABC=)] addrx
(1

Packed Parameters

Certain R-type macro-instructions use registers 0 and 1 to pass three
parameters +to the control program. Two or three parameters are loaded
into one parameter register; these are called packed parameters. The
user's problem program can preload packed parameters, provided that it
preloads both of them. The fact that preloading is possible and the
required special register notation are shown in the following example:

T J
Name | Operation Operand
=T

[symbol] EXAMP

b e e ey e

abc-addrx|, |Jdef-value,ghi-value
(1) (0)

frm o e s e
e e e e e

!
|
I
L

Section 1: Introduction 23

For this example, the operand descriptions could state that the def
parameter can be preloaded into the two high-order bytes of register O,
and the ghi parameter can be preloaded into the two low-order bytes of
register 0. Then, if (0) is written for the second operand of the
macro-instruction, it specifies both the def and ghi parameters, and
both these parameters must be preloaded into register 0. Note that
ordinary register notation (designating one of the registers 2 through
12) can be written for the def operand or the ghi operand, or both, if
these operands are written separately. Where ordinary register notation
is used, the specified value must be in the rightmost two bytes of the
designated register.

LINKAGE CONVENTIONS

Work can be performed by Computing System/360 with the aid of
functions provided by the System/360 Operating System. Some of these
functions are the management of nested levels of control and action, as
follows:

¢ Jobs are executed.

e Within a job, job steps are executed.

e Within a job step, a highest level task is created, and the program
specified on the EXEC job control statement is given control.

(Refer to the publication IBM System/360 Operating System: Job
Control Language for details about the EXEC statement.)

When the first program of a job step is executed, the control level
can change as a result of the following processes:

e The creation and termination of new tasks.

e The exchange of control between subprograms within the user's
problem program.

e The exchange of control between the user's problem program and the
control program.

Each of the above three processes is a linkage, and involves standard
methods for giving control, passing data, and maintaining machine and
program environments. These standard methods are the linkage
conventions.

LINKAGE TERMINOLOGY

Linkages involve the use of subprograms or subtasks, and, therefore,
each 1linkage results in an upward or downward change in control level
(except when the XCTL macro-instruction is used; in this case, the
control level does not change). '

Linkage from a higher level program to a lower level program is
called an entry linkage. It results in the giving of control to an
entry point in the 1lower 1level program. Linkage from a lower level
program to a higher level program is called an return linkage. It
results in the giving of control to a return address in the higher level
program.

24

An entry 1linkage 1is initiated in the higher level program by
execution of a set of :instructions referred to as a calling sSequence.
The 1linkage is completed by execution of entry code at the entry point
of the lower level prdgram. A return linkage occurs through execution
of return code in the lower level program. This usually completes the
linkage; that is, no linkage-associated instructions normally exist at
the return address in the higher level program. (Calling sequence
identifiers and instructions to interpret return codes are exceptions to
this statement; they are discussed later.)

In addition to the giving and returning of control between two
programs, it is usually necessary to communicate data, as follows:

e Implicit communication. Both programs know the locaticn of the data
because they were compiled, assembled, or linkage edited together.

* Explicit communication. At the time of the linkage, either the data
or its location is passed between the programs. Communication by
passing the data itself is called communication by value; communi-
cation by passing the location of the data is called communication
by name.

Implicit communication can be used when the linkage is either a
branch and link instriuction or a CALL macro-instruction. However, if a
program requiring data and using implicit communication is redesigned to
run on a computer with a smaller main storage area, the program may have
to be rewritten to use the LINK macro-instruction and explicit communi-
cation. If the program had originally used explicit communication, the
changes required would be minor.

Data communicated explicitly is called a parameter. Parameters are
further classified according to their use, as follows:

® Control program parameters, which are passed between the user's
problem program and the control program when system macro-
instructions are executed. These parameters are passed in either
parameter registers or parameter lists.

e Problem program parameters, which are passed between subprograms of
the user's problem program when a linkage occurs. These parameters
are passed only in parameter lists.

LINKAGE TYPES

All 1linkages between subprograms of the user's problem program, and
between the user's problem program and the control program, can be
classified into four types:

e Type I - Direct [Linkage: A branch and link instruction or a CALL
macro-instruction is used to link two subprograms or the user's
problem program and a problem state control program routine. (Most
data management macro-instructions use this type of linkage at the
interface between the user's problem program and the control
program.)

e Type II - Supervisor-Assisted Linkage: A LINK, XCTL, or ATTACH
macro-instruction is used to link two subprograms.

e Type III - Supervisor Linkage: A supervisor call (SVC) instruction
is used to link to a control program routine that is executed in the
supervisor state. (The SVC instruction is part of the macro-

Section 1: Introduction 25

expansion of a system macro-instruction, or it is in a control
program routine entered by a direct linkage.)

e Type IV - Exit Linkage: A branch and 1link instruction or a 1load
program status word (LPSW) instruction is used to enter a user's
routine (called an exit routine) during execution of a system
service in response to a macro-instruction; this linkage is called a
synchronous exit. An LPSW is used to enter a user's routine when an
asynchronous event occurs; this linkage is called an asynchronous
exit.

The four linkage types serve as convenient descriptions of linkage
interfaces that can exist. However, 1linkages can actually be more
complex than the linkage types might indicate. Figure 1 shows one of
the more complex cases.

In Figure 1, a LINK macro-instruction results in a supervisor-
assisted (type II) linkage. The load module to be given control is
module B. However, to give control to B, two linkages actually occur:

1. The first linkage is between load module A and the supervisor. The
entry linkage uses an SVC instruction, and the return linkage uses
an LPSW instruction.

2. The second linkage is between the supervisor and 1load module B.
The entry 1linkage uses an LPSW instruction. The return linkage
uses a RETURN macro-instruction, which results in a branch from
module B to an SVC instruction in the supervisor. The branch
instruction uses the contents of a return register, which the
supervisor set with the address of the SVC instruction before
giving control to module B.

The action of these linkages gives the effect of a direct 1linkage
between load modules A and B.

A SAVE macro-instruction is shown at the entry point of module B, and
a RETURN macro-instruction is shown at the location from which a return
is made to the supervisor. These macro-instructions save and restore
the contents of the registers used by module B.

r 1
[Load Load |
| Module A Supervisor Module B |
| |
| p——> e |
I LINK B | ———— I SAVE |
| I I |
——-1}1 LINK I	———	
} macro-		
-——1} expansion	LPSW ———————— 4	
3		
SVC} ——mmmmmeee 5 svC Y S — B		
<)	I	
-	-	e !
I		
		—
I I	i	
v I, LPSW	SUS—— RETURN	
! _ !

Figure 1. Linkages in LINK Macro-Instruction Execution

26

LINKAGE REGISTERS

The registers having specific roles in linkages are listed, and their
functions described, in Table 2.

Table 2. TLinkage Regﬁsters

.
|Register
| Number

Register Name

Contents

Parameter register

Parameters to be passed to the
control program.

Parameter register

or

Parameter 1ist
register

Parameters to be passed to the con-
trol program.

Address of a parameter list to be
passed to either the control program
or a user's subprogram.

e e e e e e ———

13

Save area register

Address of the register save area to
be used by the called program.

14

Return register

Address of the location in the call-
ing program to which control should
be returned after execution of the
called program.

15

[oo S i e o ! o S e . . i e . . e, S e Y St e S, i e N . e e S @A S S, e S, S e et . . Ao, . S e S, o

Entry poin% register

or

Supervisor: parameter
list register

or

Return code register

T
|
I
I
+
!
|
|
[
%
I
|
I
!
I
|
|
|
I
+
|
|
|
|
lr
|
!
I
|
|
_lr
I
I
I
|
|
I
[
I
|
I
[
|
|
I
|
I
!
I
I
|
I
!
|

N -

Address of the entry point in the
called program.

Address of a parameter 1list to be
used by the supervisor in a
supervisor-assisted 1linkage. This
list contains information needed by
the supervisor to give control to
the called program.

A return code that indicates to the
calling program whether or not an
exceptional condition occurred dur-
ing processing of the called pro-
gram. The return code should be
zero for a normal return or a multi-
ple of four for various exceptional
conditions.

Section 1: Introduction

l—-————.——_—_.—_——-——-_————-——_——-—-«h——-—_—.J-—-—-—_Ai-———.—..—_.————-Ih—.————._ll—_-——-d

27

Some of the linkage register identities and uses are shown in the
following typical type I linkage calling sequence:

CNOP 2,4
LA 14,RET load return address
L 15,=V(SUBR) load entry point address
BALR 1,15 load parameter list address
DC A(PAR1,PAR2) parameter list
RET B *+04(15) branch, using return code
B NORMAL branch if normal
B COND1 branch if condition 1
B COND2 branch if condition 2

In the preceding sequence, a higher 1level program (the calling
program) gives control to a lower level program (the called program) by
branching to the address in register 15. Register 15 is the entry point
register; it can be used to provide initial addressability in the called
program.

Before branching, the calling program loads register 14, the return
register, with the address to which the called program should return
control.

Two parameters, PAR1 and PAR2, are passed to the called program, in a
list pointed to by register 1, which is the parameter list register.

Before returning to the calling program, the called program may load
register 15 with a return code. (In the above example, register 15 must
be loaded with a return code.) In this use, register 15 is the return
code register.

The return code should be 0 for a normal return. If the return code
is a multiple of 4, it can be interpreted by a branch +table in the
calling program, as shown above. Another way of interpreting the return
code is shown below:

RET LTR 15,15 test return code
BNZ COND~4(15) branch if not zero

Before the preceding calling sequence is executed, register 13, the
save area register, must be loaded with the address of a save area that
is provided by the calling program. The called program stores, in the
save area, the contents of the registers that it will use.

If a supervisor call (type III) linkage results, parameters can be
passed in a list as shown, or they can be passed in registers 0 and 1.
In this use, registers 0 and 1 are parameter registers. Whether
parameters are passed in a list or in registers depends on the type of
the macro-instruction and on the number of parameters to be passed.

In a supervisor-assisted (type II) linkage, the called program need
not be in main storage when the linkage occurs, and the calling program

does not know its entry point address. The supervisor is given a
symbolic program name by means of a supervisor parameter list pointed to
by register 15. In this use, register 15 is the supervisor parameter

list register. The supervisor then acquires the called program and
loads its entry point address into register 15. Control appears to be
given to the called program as in a type I linkage.

28

SAVE AREA USE

Registers that are! not linkage registers must have their contents
saved and restored by each lower level program that is given control by
a higher level program. This conserves main storage, because the
instructions to save and restore registers need not be ‘in each calling
sequence in the higher level program. With the exception of the ATTACH
macro-instruction, the save area used is provided by the higher level
program, and has a standard format so that all programs can save
registers in a uniform manner. Save areas are chained together in
ascending order so that register contents can be restored as control is
returned to the higher level programs. Save areas can also optionally
be chained together in descending order.

The SAVE macro-instruction has optional provisions for saving, in the
save area, the entry point address and the return address associated
with each 1linkage. The RETURN macro-instruction has an optional
provision for marking the save area provided by the higher level program
to indicate that the return has occurred.

These provisions can assist in the interpretation of program dumps

taken by means of the test translator DUMP DATA and DUMP CHANGES
macro—-instructions.

Register Saving and Restoring Responsibilities

Every program, before it executes a type I, type II, or type III
linkage, must provide a save area and place the address of this save
area in register 13.1 A program can use the same save area for all of
its 'linkages; unless required for other purposes, register 13 need be
loaded only once, when the program is entered. In the case of a
reenterable program, the save area must be provided from a dynamically
allocated area of storage.

The save area provided by the calling program is used by a called
user's problem program in type I and type II linkages to save the
contents of registers:the called program will use. Register saving
should be accomplished by using a SAVE macro-instruction. Because
register saving should be the first action taken by the called program,
the SAVE macro-instruction should be wused at the entry point of the
called program. The called program should use a RETURN macro-
instruction to returnicontrol to the calling program, and to restore the
saved registers from the save area.

The save area provided by the calling program is used by the control
program in type III linkages. Before returning to the calling program,
the control program may execute a type IV 1linkage to a user's
synchronous exit routine. Although the contents of register 13 will be
the same in both linkages, the exit routine must not attempt to use the
save area provided by the calling program.

As in the case of the highest level program of a task, a routine
entered by a type IV linkage can use any register (except the return
register) without saving and restoring its contents. On execution of a
RETURN macro-instruction, the control program restores register contents

iWwhen the R forms of the GETMAIN and FREEMAIN macro-instructions are
issued, a save area need not be provided, and the control program will
not refer to or modify the contents of a main storage area pointed to by
register 13.

Section 1: Introduction 29

automatically. To allow the use of standard 1linkage conventions,
however, +the control program provides a save area for use by highest
level programs and by exit routines that are entered asynchronously on
termination of a task (the ETXR and STAE routines) and on completion of
a timer interval (the STIMER routine). This save area is 1located in
subpool 0 of the job step and is pointed to by register 13.

Except for the SVC interruption, interruptions are not classified as
linkages. When the control program processes any interruption, except
for the SVC interruption that occurs in a type III linkage, it saves, in
its own main storage area, the contents of all registers that it will
use, and then restores these register contents before returning to the
user's problem program.

Save Area

A save area occupies 18 full-words and is aligned on a full-word
boundary. The save area words, their displacement in bytes from the
area origin, and their contents are shown in Table 3.

Additional information on the contents of each of the words in a save
area is given below:

e Word 1. An indicator byte followed by three bytes that contain the
length of allocated storage. This field is used only by programs
written in PL/I language.

e Word 2. The address of the save area used by the calling program.
The address is passed to the calling program in register 13 by the
next higher 1level program. The calling program must store the
address in this word before it loads register 13 with the address of
the current save area. This word contains all zeros if the current
save area is provided by the supervisor for use by an asynchronous
exit routine or the highest level program of a task.

e Word 3. The address of the save area provided by the called
program, unless the called program is at the lowest level and does
not have a save area. (The called program need have a save area
only if it is itself a calling program, or if it executes a
supervisor or data management macro-instruction other than SAVE,
RETURN, oxr the R forms of GETMAIN and FREEMAIN.) 1If save areas are
being chained together in descending order, the called program
stores the save area address in this word. This word is not used by
called control program routines.

e Word 4. The return address, which is in register 14 when control is
given to the called program. The called program stores the return
address in this word if it intends to modify register 14 or if the T
operand is written in the SAVE macro-instruction. If the T operand
is written in the RETURN macro-instruction, the called program
changes the high-order byte of this word to all-ones just before it
returns to the calling program. The all-ones byte indicates that
the return occurred. None of these operations is performed by
called control program routines.

e Word 5. The address of the entry point of the called program. This
address is in register 15 when control is given to the called
program. The called program stores the entry point address in this
word if the T operand is written in the SAVE macro-instruction.
This word is not used by called control program routines.

30

e Words 6 and 7. The contents of registers 0 and 1, respectively.
The called program stores the register contents in these words if it
so desires, or if the contents of registers 15 and 2 are saved. In
the latter case, the SAVE macro-expansion contains a single STM
instruction that also saves the contents of registers 0 and 1.

e Words 8 thrcugh 18. The contents of registers 2 through 12, in that
order. The called program stores the register contents in these
words if it intends to modify the registers.

Table 3. Save Area Words and Contents in Calling Programs

r T T - 1
| Word | Displacement | Contents |
L | 3 dJ
v T T 1
| 1 0 | Indicator byte and storage length. |
L] 1 4
T T Ll 1
] 2 | 4 | Address (stored by the calling program) of the |
| | | save area used by the calling program. This |
| | | save area is provided by the program that |
| | | called the calling program. i
L 4] — ——— 4
r T T 4
| 3 8 | Address (stored by the called program) of the |
| | | save area provided by the called program. |
i | 4
r _+" T B
| 4 12 | Return address (register 14 contents - stored |
| | | by the called program). |
1 L 1 4
3 T s q
| 5 | 16 | Entry point address (register 15 contents - |
| | | stored by the called program). |
! t —4- - —
| 6 | 20 | Register 0 |
¢ $ 4= — {
| 7 | 24 | Register 1 |
¢ t 4 {
| 8 | 28 | Register 2 i
b 4 } S
| 9 | 32 | Register 3]
(]]

T 1

10 36 | Register 4 |

J |

K| R]

| 11 | 4o | Register 5 |
L L 1 — !
r T T 1
{ 12 ! uu q Register 6 |
d

T T T 1
| 13 | 48 | Register 7 |
t ¢ t :
| 14 | 52 | Register 8 |
F + ¢ -~ 4
! 15 ! 56 ﬁ Register 9 j
r 1 T 1
| 16 60 | Register 10]
L L d
3 T 1
| 17 64 | Register 11 |
1 I 3
L} T 1
| 18 | 68 | Register 12 |
L L 4 J

Section 1: Introduction 31

Save Area Chaining

The

concept

words two and three of a save area,

the
save

areas.
shown as solid lines;

following
different linkages are used, and relate the

examples

of control levels.

illustrate the chaining of save areas when

chaining

sequence

to the

Each example concentrates on (1) the use of

areas

(2) the contents of register
point of linkage, and (3) the responsibility of programs to provide
Pointers to save areas in higher control level programs are
pointers to save

in

programs are optional and are shown as dotted lines.

EXAMPLE

module as a

lower control

13 at

level

1: The job stream contains an EXEC statement for module ALPHA.
ALPHA consists of program A and program B, which was

LINK macro-instruction to program C.

EXAMPLE 1

Area Provided by

Area Used by

Word 2
Word 3

Words 6 to 18

CALL to

Save Area 1
Control Program

Program A

B
i
|
|
|
|

(.

0000

Pointer to Area 2

T Registers Saved T

by A

4

—

A=
==

Save Area 2
Program A

Program B

result of a CALL macro-instruction.

LINK to C

T Registers Saved T

Pointer to Area 1

by B

Pointer to Area 3 |- — —

Save Area 3
Program B

Program C

included
Program B contains a

™~ L—E‘

Pointer to Area 2

7

T Registers Saved T

by C

Pointer to Area 4 N

in the

Save Area 4
Program C

Unused

Pointer to Area 3
Unused

I~ NN

| Unused |

In this example, program A is considered to be at the highest control

level and program C at the lowest.

word

At the time of each linkage,
control
contain a linkage to a lower
instruction,
register 13 until the return
generality,

the

higher

save

since

execution.

EXAMPLE 2:

issues

area

level

n

program.

control level

When program A
2 of the save area provided by the control program contains zeros.
register 13 must point to the save area

Since

is not required.

linkage.)

program C might

XCTL macro-instruction to program C.

D. The
program B

32

ma jor

consideration
(before the XCTL macro-instruction) and program C
XCTL macro-instruction).

here

The save area is shown here
require

Finally

or

receives

control,

of

program C does not either

issue

system macro-

(Program C need only save

the

calls

for

area during another

Program A receives control from a higher level program and
LINK macro-instruction +to program B, which in turn issues a

« program C

program

is +the use of save area 2 by both

(after

the

EXAMPLE 2

LINK to B XCTL to C CALL to D
| | I
Save Area 1 : . Save Area 2 | Save Area 1 Save Area 2 | Save Area 4
|
Area Provided by : Higher Level Program ' Program A | Higher Level Program Program A } Program C
Area Used by : Program A : Program 8 : Program A Program C | Program D
|
S I I < < I
L) »] > >
Word 2 Pointer to Prior Area L{ Pointer to Area | [__IPointer to Prior Area : Pointer to Area 1 Pointer to Area 2
Word 3 Pointer to Area 2 ! [Pointer to Area 3|~ Pointer to Area 2 |-~ Pointer to Area 4 |-~ Unused
Words 6 to 18 V}egisfers Saved T "-‘Regisfers Saved T ‘ﬂ‘Registers Saved T ’“Regisrers Saved | -‘Unused b
by A ‘{byB by A by C

The XCTL macro-insStruction has the same effect on the usage of save
areas as that of a RETURN macro-instruction from program B followed by a
LINK macro-instruction! from program A to program C. Register 13 must
point to save area 2 when the XCTL macro-instruction is executed.
Program C then replaces program B as the 1lowest control level rather
than introduce a new level of control. The linkage from program C to D
introduces a lower control level. Note that program B provides a
separate save area f(area 3, not shown) that is not used in this
execution.

EXAMPLE 3: Program A issues an ATTACH macro-instruction for a task that
uses Program B. Program A then calls programs C and D. Program B links
to program E.

EXAMPLE 3
CALL to C CALLto D
T 1
Save Area 1 | Save Area 3 i Save Area 4 Save Area 5
Area Provided by Higher Level Program : Program A l Program C Program D
Area Used by Program A : Program C [Program D Unused
|
Q § \\\ — —» — -
Word 2 Pointer to Prior Area I—/—— Pointer to Area 1 Pointer to Area 3 — Pointer to Area 4
Word 3 Pointer to Area 3 - — Pointer to Area 4 |- —~ Pointer to Area 5 |——~ Unused
Words 6 to 18 MRRegistevs Saved T T Registers Saved T T Registers Saved T T Unused T
by A by C by D
Attach B LINK to EI
|
| Save Area 2 | Save Area 6
| l
Area Provided by | Control Program l Program B
Area Used by Program B I Program E
I
§]
Word 2 0000 . Pointer to Area 2
Word 3 Pointer to Area 6 - — Unused
Words 6 to 18 H‘Regisfers Saved T T Registers Saved
by B by E

Section 1: Intrcduction 33

Program A initiates a second sequence of control levels when it
attaches a task. The first sequence of control levels starts with
program A, the highest control level, and ends with program D, the
lowest. The second sequence consists of program B at the highest level
and program E at the lowest level. BAlso, the second sequence is at a
lower control level than the first sequence even though the two operate
in parallel. (It is understood that at some time program B will issue a
RETURN macro-instruction and the task will be detached.)

CALLING SEQUENCE AND ENTRY POINT IDENTIFIERS

A calling sequence identifier is a 16-bit binary number in the second
half-word of a full-word NOP instruction. The identifier can be
specified Dby either the CALL or LINK macro-instruction. The NOP
instruction is located at the return address if a CALL macro-instruction
(or a hand-coded direct linkage) is used, or follows the SVC instruction
if a LINK macro-instruction is used.

An entry identifier is a character string of up to 70 characters. It
can be specified by the SAVE macro-instruction (described in "Supervisor
Services").

LINKAGE INTERFACE RESPONSIBILITIES

There are three distinct linkage interfaces of which the programmer
must be aware:

e The interface +that a called program sees in type I, type II, and
certain type IV linkages.

s The interface that a calling program sees in a type I linkage
resulting from a hand-coded calling sequence.

e The interface that a calling program sees in a type I, type II, or
type III linkage resulting from a supervisor or data management
macro-instruction.

Conventions concerning exit routines (used in type IV linkages) are
given in the descriptions of the macro-instructions used to invoke the
exit routines.

called Program Interface in Type I, Type II, and Certain Type IV
Linkages

The conventions to be followed by a called program are independent of
how the program is given control. That is, the called program need not
be aware of whether it was entered through the use of CALL, LINK, XCTL,
or ATTACH or through an asynchronous exit taken on termination of a task
or completion of a timer interval. The called program is responsible
for the following:

1. Saving the contents of registers 2 through 12 and 14 in the calling
program's save area, if +the called program modifies these
registers, and subsequently restoring these registers before
returning to the calling program.

34

Saving the contents of register 13 in the called program's save
area, if the called program modifies this register, and subsequent-
ly restoring this register before returning to the calling program.

Ensuring that the prograﬁ mask (PSW bits 36 through 39) and the
program interruption control area (PICA) are the same upon exit
from the called program as they were upon entry to it.

Item 1 can be accomplished by the SAVE and RETURN macro-instructions;

items 2 and 3 must be accomplished by assembler language instructions.

The contents of the floating-point registers and the condition code

(PSW bits 34 and 35) need not be the same upon exit €from the called
program as they were upon entry to it.

Calling Program Interface in a Type I Linkage Resulting From a

Hand-Coded Calling Sedquence

1.

The calling program is responsible for the following:

Loading register 13 with the address of a save area.
Loading register 14 with the return address.
Loading register 15 with the entry point address.

Loading register 1, if necessary, with the address of a parameter
list.

After execution of the calling sequence, the calling program can

expect the following to occur as a result of execution of the remainder
of the linkages:

1.

2.

The contents of registers 2 through 14, the program mask, and the
program interruption control area will ke unchanged.

The contents of registers 0, 1, and 15; the contents of the
floating-point registers; and the condition code may ke changed.

Calling Program Interface in Type I, Type II, and Type III Linkages

Resulting From Supervisor and Data Management Macro-Instructions

1.

The calling program is responsible for the following:

Ensuring that the entire macro-expansion and the 1literal pool
currently being used are addressable by a base register other than
registers ¢, 1, 14, and 15.

Loading register 13 with the address of a save area.

If an XCTL macro-instruction is being executed, restoring the
return register, and also the program mask, and the program
interruption control area as they were upon entry to the calling
program. The user can request that registers in the range 2
through 12 be restored. Register 13 must point to the save area in
the program that called this calling program.

Section 1: Introduction 35

The calling program can expect the following to occur as a result of
execution of the macro-instruction:

1. The contents of registers 2 through 13, the program mask, and the
program interruption control area will be unchanged. Note that use
of the SPIE macro-instruction results in an exception +to the
preceding statement: SPIE modifies the program mask and program
interruption control area.

2. The contents of the floating-point registers will not be changed by
a called control program routine, but they may be changed if the
user's problem program is given control during the linkage (as in a
type I or type II linkage, or if a synchronous exit routine is
given control).

3. The contents of registers 0, 1, 14, and 15, and the condition code
may be changed.

PASSING CONTROL INFORMATION TO A JOB STEP

The EXEC job control language statement can be used to pass control
information to the first program of the specified job step. The control
information is specified by characters written as the optional value of
the PARM keyword operand. The following rules must be observed in
writing the optional value:

e The optional value is delimited by: on the left, the equal sign of
the keyword operand; and, on the right, a comma, if another operand
follows, or a blank, if another operand does not follow.

e If the control information is to contain either a comma or a blank,
the optional value must begin and end with a single quotation mark;
these do not become part of the control information.

e If the optional value begins and ends with a single quotation mark,
single gquotation marks that are to be part of the control informa-
tion must each be written in the optional value as a pair of single
quotation marks. Note that the optional value cannot begin or end
with an even number of single quotation marks.

e The control information cannot consist of more than 40 characters.

The control information is passed to the job step by means of a data
area, a parameter list, and register 1. The data area consists of a
half-word followed by the control information. The half-word contains a
count of the number of control characters. The parameter list consists
of a full-word that contains the address of the data area and has its
high-order bit set to 1, giving the word the appearance of the last word
in a variable-length parameter list. (Refer to the description of the
VL operand of the CALL macro-instruction for a discussion of variable-
length parameter lists.)

The control program places the data area and parameter list in a main
storage area that it allocates from subpool zero of the job step. The
data area and parameter 1list are aligned to half-word and full-word
boundaries, respectively. The control program loads the address of the
parameter list into register 1 and then gives control to the job step.

If the PARM field is omitted, the half-word count field in the data
area 1s set to zero.

36

MACRO-INSTRUCTION DESCRIPTIONS

System macrco-instructions are presented in this publication by means

of macro-instruction: descriptions, each of which is organized in
accordance with the following outline:

1.

10.

11.

Title - the mnemonic operation code of the macro-instruction; a
phrase explaining either the meaning of the mnemonic or the
function of the macro-instruction; and, where applicable, a
parenthesized letter stating the type of the macro-instruction (R
or S).

Function - a brief summary of the services provided.

Format Description - an illustration showing how and when operands

are to be written.

Operand Descriptions - detailed information about writing each
operand, including any cautions applicable to a particular operand.

Execution - reference material describing the normal use or
execution of the macro-instruction.

CAUTIONS - warnings of any special restrictions on the use of the
macro-instruction. In some cases, the results of improper use are
described.

EXCEPTIONAL RETURNS - material describing return codes and synchro-

nous and asynchronous exit routines. (Refer to "Linkage Conven-
tions.")

ENVIRONMENT - description of the use of the macro-instruction with

a subset of the control program and a description of the services
available.

EXAMPLES - one. or more specific examples showing how the macro-

instruction is written and what it does.

PROGRAMMING NOTE$ = tutorial material describing the use of the

macro-instruction and the services that it requests.

IL-— AND E-FORM USE - a statement of the abnormal operand
requirements, if any, of the L and E forms of an S-type macro-
instruction.

Items 1 through 4 are included in all macro-instruction descriptions.

The remaining outline items are used only as appropriate. When items 6
through 11 are included, they are identified by the indicated all-caps
headings.

Section 1: Introduction 37

SECTION 2: SUPERVISOR SERVICES

The supervisor provides a variety of services that help the user
manage programs and tasks, handle exceptional conditions, operate the
interval timer, and write to the operator or 1log. The supervisor's
program management facility enables operation of simple, overlay, and
dynamic programs. The user requests supervisor services through the
macro-instructions described in this section.

For ease of reference, these macro-instructions are grouped in
subsections according to functions. The order of the subsections, the
macro-~instructions covered under each, and the general function of each
group are as follows:

e Simple Program Management: CALL, SAVE, and RETURN. These macro-
instructions provide standard linkage between routines to form them
into simple programs. SAVE and RETURN are also applicable to the
dynamic program management function (described below).

e Overlay Program Management: SEGLD and SEGWT. The first macro-
instruction provides overlap between segment loading and processing
while the second delays processing until the requested segment is in
main storage.

e Dynamic srogram Management: LINK, XCTL, LOAD, DELETE, and IDENTIFY.
These macro-instructions provide supervisor-assisted linkages
between load modules to form a program dynamically during its
execution.

e Main Storage Management: GETMAIN and FREEMAIN. These macro-
instructions dynamically allocate storage to a task and return
allocated storage to the control program.

e Task Creation and Management: ATTACH, DETACH, CHAP, and EXTRACT.
These macro-instructions create tasks and remove them from the
system, and provide the basic means for task management.

e Task Synchronization: WAIT, WAITR, POST, ENQ, and DEQ. These
macro-instructions enable a task to synchronize itself with another
task, or with a control program service.

e Exceptional Condition Handling: SPIE, STAE, ABEND, and CHKPT. These
macro-instructions provide for program interruptions, abnormal
terminations, and checkpoints.

e General Services: TIME, STIMER, TTIMER, WTO, WTOR, and WTL. These
macro-instructions enable a program to set, check, and cancel a time
interval and to write to the 1log and to the operator (with or
without a reply.)

Some supervisor macro-instructions request services that are affected
by the control program options that can be excluded by an installation.
The control program options and storage requirements are discussed in
detail in the publication, IBM System/360 Operating System: Storage
Estimates, Form C28-6551.

38

The operating system from which all control program options have been
excluded is referred to as the primary control program. It provides for
stacked job processing with sequential scheduling (jobs are processed as
they are provided as input to the system) and for single task operation.
The function and performance of the primary control program can be
increased by inclusion of the following options:

Option 1: Multiple wait

Option 2: Multiprogramming with a fixed number of tasks

Option 3: 1Identify

Option U4: Multiprogramming with a variable number of tasks
A. Scheduling single job with work queue directory in main storage

B. Scheduling singlie job with work queue directory on direct-access
storage

C. Scheduling multiple jobs with work queue directory in main storage
D. Scheduling multiple jobs with work queue directcry on direct-

access storage

Option 5: Additional transient areas and control

Option 6: Timing
A. Time

B. Interval timing

Option 7: Alternate console

Option 8: Composite console
Option 9: Protection
Option 10: Priority scheduling
Option 11: Input readers/interpreters
Option 12: Output writers
Option 13: Job step timing
Option 14: Rollout/rollin
Each installation‘'s guide should be consulted to determine which
control . program optidns have been excluded from the system. The manner
in which individual se€rvices are affected by the inclusion or exclusion

of particular options is discussed in detail in each macro-instruction
description. Table 4 summarizes the services so affected.

Section 2: Supervisor Services 39

Table 4. Services Affected by Including or Excluding Control Program

Opticns

r T . L} R | 1
| Macro- | Option | Option | |
| Instruction|Included|Fxcluded| Result |
I8 1 1]

T =TT T T —--"l
| ABEND | | 4 | The entire job step is terminated |
| | | | abnormally |
F ¥ 1 ¥ —mmmmm e 1
| ATTACH] | 4 | Refer to the Environment discussion |
| | | | in the macro-instruction i
b= b ¥ ¥ -
| CHAP I I 4 | NOP [
¢ —+ -+ v — 1
| CHKPT I 4 | | NoP [
¢ 4= 1 -t —
| DEQ | | 4 | NoP |
L —_— I [— 4
L3 T T T h
| DETACH I | 4 | nNop I
[L d —— e —— P i]
v T T 8|
| ENQ | | 4 | NoP |
t ¥ $-- e o 1
| EXTRACT | | 4 | Only TIOT address is provided |
¢ —4 t ¥ - 1
| FREEMAIN | | 4 | Subpool ignored |
| | | | List request invalid |
1 L -t +_,__ ________|
r T T .

| GETMAIN | | 4 | Subpool ignored |
| | | | List request invalid |
t 4 - ¥ :
| IDENTIFY | | 3 84 | Refer to the Environment discussion |
| t + { in the macro-instruction |
| [3 |4 | |
t— -—1 - ¥ - —
| SEGLD | I 4 | Nop i
¢ -—1 3-- + —mmmm o - . 1
| SPIE | | 4 | The exit routine applies to the job |
| | I | step |
|8 —] 1 1 — ———— “
r T T T

| STAE | | 4 | NoP |
f-—- -—1 - ¥ 4
| STIMER | i 6B | NOP |
L —_—1 1 ! —_ 4
r T T T - - 4
| TIME | | 6A & 6B| Only the date is provided |
- -—+4 ¥ 4 — 1
| TTIMER | | 6B | NOP i
i —_— 1 4 —— J
[3 T T T a
| WAIT | |11,2, & 4] Meaningful for only one event |
I 1 J
F } — $-—- 1
| WAITR | | 2 | Treated as a WAIT |
F -t —f-- = - 1
| WTL | | 12 | NOP |
| IS I, 4 4 — 4

40

SIMPLE PROGRAM MANAGEMENT

CALL -- Call a Program (S)

The CALL macro-instruction passes control from a program, load
module, or segment of jan overlay load module (each called a program for
convenience) to a specified entry point in another program. The program
issuing the CALL mdcro-instruction is referred to as the calling
program; the program receiving control is referred to as the called
program. Except when the overlay supervisor can be used, the called
program must be in main storage when the CALL macro-instruction is
executed. The called program is brought into main storage in one of two
ways:

1. As part of the load module issuing the CALL. In this case, the
CALL macro-instruction must specify an entry point. When the
linkage editor processes a load module containing such a CALL, it
includes the called program in the load module.

2. BAs the load modulle specified by a LOAD macro-instruction. In this
case, the CALL macro-instruction must specify the program to be
called by indicating that the address of its entry pcint will be
loaded into register 15 (the entry point register) before execution
of +the CALL malcro-instruction. The LOAD macro-instruction must
precede the first CALL for the program.

The called program returns control to the calling program by issuing
a RETURN macro-instruction.

r -7 =T - - 1
| Name | Operation | Operand |
F $ -—+ {
| (symboll | CALL | | entry-symbol |[, ({param~addr,}...)[,VL]1] |
I | [] a3 |
I | I |
| | | (, ID=absexp]l |
L —— L ——— J
entry

specifies the entry point to which control is to be passed. If the
symbolic mname of an entry point is written, a V-type address
constant is generated as part of the macro-expansion; control is
given to the called program by a branch to the address in register
15 (the entry point register).

If (15) is written, the actual address of the entry point must have
been loaded into register 15 before execution of this macro-
instruction.

param
specifies an address to be passed as a parameter to the called
program. The param operands must be written in a sublist, as shown
in the format description. If one or more param operands are
written, a problem program parameter 1list is generated. It
consists of a full-word for each operand. Each full-word is
aligned on a full-word boundary and contains, in its three
low-order bytes, the address to be passed. The addresses appear in
the parameter list in the same order as in the macro-instruction.

When the called program is entered, register 1 (the parameter 1list

register) contains the address of the problem program parameter
list.

Section 2: Supervisor Services - Simple Program Management 41

If the param operand is omitted in a standard form of the
macro-instruction, register 1 is not set to zero.

VL
specifies that the sign bit is to be set to 1 in the last full-word
in the problem program parameter list.

The parameter 1list has a fixed 1length if it is to contain a
certain, known number of parameters every time the called program
is given control. The list has a variable length if it can contain
a varying number of parameters. Only in the latter case should the
VL operand be written in order to mark the end of the list.

If the list has a variable length and if register notation is used
to write the last param address, the user's problem program can set
the sign bit in the designated register to 1. If this is done, the
VL operand need not be written.

ID
specifies a binary calling sequence identifier. The maximum value
of the identifier 1is 216-1. When this operand is written, a
full-word NOP instruction appears at the end of the macro-
expansion. The NOP instruction contains the operand value in its
two low-order bytes.

Upon entry to and return from the called program, register 14 (the
return register) contains one of the following:

e If the ID operand was written, register 14 contains the address
of the 1last instruction (the NOP instruction) in the macro-
expansion.

e If the ID operand was omitted, register 1% contains the address
of the first byte following the macro-expansion.

CAUTIONS: The called program operates at the same control level as the
caller. If the called program issues an XCTL macro-instruction, the
caller cannot expect to regain control.

If the entry operand is written as a symbolic name, a V-type address
constant is generated by the assembler, and the linkage editor can make
the called program part of the calling program's load module as part of
the automatic library call procedure. The symbolic name must be either
the name of a control section or an assembler language ENTRY statement
operand in the called program.

If the entry operand is written as (15), a V-type address constant is
not generated. If the called program is not part of the calling
program's load module, a LOAD macro-instruction must be executed (to
bring the program to be called into storage) before the CALL macro-
instruction is issued.

The supervisor has no control over entry to a program by means of the
CALL macro-instruction. Therefore, when a serially reusable program can
be entered by two or more tasks using only CALL macro-instructions or a
combination of CALL macro-instructions and supervisor-assisted linkages
(LINK, XCTL, and ATTACH), the ENQ and DEQ macro-instructions must be
used, to ensure that only one task at a time uses the called program.
(Refer to "Task Synchronization" for information on the use of ENQ and
DEQ.)

EXCEPTIONAL RETURNS: The called program can specify a return code in
the RETURN macro-instruction. When the RETURN macro-instruction is
executed, the return code is loaded into register 15 (the return code

42

register). When the calling program resumes execution, it can
interrogate the return code in register 15.

EXAMPLES: In the following examples, EX1 gives control +to an entry
point named ENT and specifies a calling sequence identifier of 2. No
parameters are passed.

EX2 gives control to an entry point whose address is contained in
register 15. Two parameters, ABC and DEF, are passed. Because the
parameter list has a variable length, the VL operand is specified. No
calling sequence identifier is specified.

EX1 CALL ENT,ID=2
EX2 CALL (15), (ABC,DEF),VL

PROGRAMMING NOTES: If register notation is used to write any param
operands, instructions to store the contents of the designated registers
in the parameter list are the first executable instructions of the
macro—-expansion. The first of these instructions can be referred to by
the symbol (if any) in the name field of the macro-instruction.

If the ID operand is written, a NOP instruction follows the parameter
list. The return address is the same with or without the ID operand.

When the CALL macro-instruction is executed, it gives control to the
called program by branching to the address in register 15.

The (15) entry operand and LOAD macro-instruction combination is most
useful when the same program is to be called many times during execution
of the calling program, but is not needed in main storage throughout
execution of the calling program. If the LINK macro-instruction is used
instead of LOAD and CALL, more execution time may be required because
the supervisor may search main and external storage for the program each
time the LINK is issued. If the CALL macro-instruction is used and a
symbolic name written for the entry operand, the called program resides
in storage throughout execution of the calling program. This wastes
main storage if the called program is not needed during all of the
calling program's execution.

L- AND E-FORM USE: The L and E forms of this macro-instruction are
written as described in Appendix B except for the following special
operand requirements:

Operand L Form E Form
entry not allowed required
VL allowed allowed only if the param operand that

results in the last address in the paramet-
er list is also written in the macro-

instruction
ID not allowed allowed
param required allowed

Only the param sublist operand and the VL operand can be written in
the L form of the macro-instruction. The param operand must be preceded
by a comma, as shown in the macro-instruction format.

All operands can be written in the E form of the macro-instruction.
If any param operands are written, the addresses are stored in the
remote parameter list in accordance with their positions in the sublist.
For example, if the sublist is (A,,B), addresses A and B are stored in
the first and third words of the parameter list.

Section 2: Supervisor Services - Simple Program Management 43

If the remote parameter list is of variable length, the VI operand in
the E-form macro-instruction should be written only if the param operand
corresponding to the last full-word in the list is also written.

If the entry operand is (15), register 15 is not used as a working

register in the macro-expansion; addresses are formed and placed in the
remote list using only register 14.

SAVE -- Save Registexr Contents

The SAVE macro-instruction is written at the entry point of a
program. Upon entry to the program, SAVE stores the contents of
specified registers in a save area provided by the program from which
control was given. The saved register contents are reloaded by
execution of a RETURN macro-instruction.

The SAVE macro-instruction can also generate an
entry-point-identifier character string.

r T . k] 1
| Name | Operation | Operand |
1 1
. —1 1 :
| [(symboll | SAVE | (regz-integer(,reg,-integerl), (T] |
I | I I
| | | [,id—[characters}] |
I | | * I
L —_—d L J

regssregs

specifies the range of registers to be stored in the save area of
the calling program. (This area is pointed +to by register 13;
refer to "Linkage Conventions"™ in Section 1.) The operands are
written as decimal numbers. They should be so written that, when
inserted in a STM instruction, they cause desired registers in the
range of 14 through 12 (14, 15, 0 through 12) ¢to be stored.
Registers 14 and 15, if specified, are saved in words 4 and 5 of
the save area. Registers 0 through 12, if specified, are saved in
words 6 +through 18 of the save area. The contents of a given
register are always saved in a particular word in the save area.
For example, register 3 is always saved in word 9 of the save area,
even if register 2 is not saved.

If reg, is omitted, only the register specified by reg, is saved.

specifies that, if not saved by the first operand, registers 14 and
15 are to be saved in words 4 and 5 of the save area. If the T and
reg, operands are present and the reg, operand is 14, 15, 0, 1, or
2, all registers from 14 through the reg, value are saved.

id
specifies the identifier of the entry point at which the SAVE
macro-instruction is located. The operand is a character string
and can consist of up to 70 characters. Because it can have a
length greater than eight characters, it can be a combination of a
data set name and a program name, or some other complex name.

If this operand is written as an asterisk, the entry point
identifier is the same as the symbol in the name field of the
macro-instruction; if the name field is Dblank, the entry point
identifier is assumed to be the name of the control section
containing the macro-instruction.

uy

CAUTIONS: A SAVE macro-instruction must not be used at the beglnnlng of
an exit routine except the ETXR, STAE, and STIMER exit routines. No
save area 1is provided in other asynchronous exits, and the save area
pointed to in synchronous exits must not be used.

An exit routine may use any register (except register 14) without
saving and restoring: its contents. The control program saves the
required registers befdre giving control to the exit routine, and, on
execution of a RETURN macro-instruction, restores register contents
automatically.

EXAMPLES: In the following examples, EX1 saves registers 14 through 10.
Registers 14 and 15 (and 0 and 1, incidentally) are saved because the T
operand is written. The entry point identifier is FURTNA7B99. EX2
saves registers 3 and 4. The entry point identifier is EX2.

EX1 SAVE (2,10),T,F4RTNATB99
EX2 SAVE (3,4),,%

PROGRAMMING NOTES: The SAVE macro-instruction is expanded as follows:

e A branch to the next executable instruction.

* A one-byte count field for the number of characters in the entry
point identifier.

e The entry point idéntifier.
* An alignment byte (if one is necessary).

¢ The next executable instruction (a STM instruction).

When the T and reg, operands are present and the reg, operand is 14,
15, 0, 1, or 2, a 51ngle STM instruction is generated to store registers
14 through the reg, value. When the reg, value is 3 to 12, two STM
instructions are generated: one stores the contents of registers 14 and
15; the other stores the contents of the registers from the reg, value
through the reg, value.

A symbol in the name field of a SAVE macro-instruction is an entry
point name. The entry point name and the entry point identifier are the
same only if the last operand of the macro-instruction is an asterisk.
The entry point name is used in passing control to the entry point. If
a program in another object module is to branch to the entry point, the
entry point name should be an operand of an ENTRY assembler language
statement prov1ded in the current object module by the programmer. If
no symbol is written in the name field of the macro-instruction and an
asterisk is written as the id operand, the entry point identifier is the
name of the control section in which the macro-instruction appears. A
program in another object module can branch to this entry point name.

Because a register's contents are always saved in a particular word
in a save area, the programmer can partially interpret the save area's
contents in a main storage dump without knowing which registers were
saved.

Section 2: Supervisor Services - Simple Program Management 45

RETURN -- Return to a Program

1.

The RETURN macro-instruction indicates normal termination and returns
control to a higher level program or task, or to the control program.
This macro-instruction's exact function depends on where it is used:

In the highest 1level program of a subtask, the RETURN macro-
instruction indicates that the subtask is complete. It terminates
the subtask and, optionally, notifies the next higher level task of
the subtask®'s completion.

In the highest level program of the highest level task of the job
step, the RETURN macro-instruction indicates that the task and job
step are complete. It terminates the step, and returns control to
the job scheduler.

In other than the highest level program of a task, the RETURN
macro-instruction indicates that the program is complete. It
terminates the program and returns control to the next higher level
program. The program receiving control can be one of the
following:

a. The program that issued a CALL or LINK macro-instruction to
give control to the program containing the RETURN.

b. The program that issued a LINK macro-instruction to give
control to a program that, in turn, issued an XCTL macro-
instruction to give control to the program containing the
RETURN.

In a synchronous exit routine, the RETURN macro-instruction
indicates that the routine is complete. It terminates the routine
and returns control to the control program.

In an asynchronous exit routine, the RETURN macro-instruction
indicates that the routine is complete. It terminates the routine
and returns control to the control program which returns to the
program that was interrupted to allow execution of the exit
routine.

The RETURN macro-instruction can reload the registers whose contents

were saved by execution of a SAVE macro-instruction.

r T T i |
| Name | Operation | Operand |
L +__ — PR, 4
L} A
[symboll	RETURN	[(regs-integer({,reg,-integerl)]1([,T]
		« RC=[absexp
		(15)
L -4 1 —— J

reg,,regp

46

specifies the range of registers to be reloaded from the save area
of the program receiving control. The operands are written as
decimal numbers. They should be so written that, when inserted in
a LM instruction, they cause the loading of registers in the range
from 14 through 12 (14, 15, 0 through 12). Registers 14 and 15, if
specified, are restored from words 4 and 5 of the save area.
Registers 0 through 12, if specified, are restored from words 6
through 18 of the save area. If reg, is omitted, only the register
specified by reg;, is restored. If both reg,; and reg, are omitted,
no registers are restored.

The address of the save area must have been loaded into register 13
before execution of this macro-instruction.

T
specifies that a byte containing all ones is to be moved to the
high-order byte of word 4 in the save area. This action occurs
after .completion of the register reloading specified by the first
operand. The all-ones byte indicates that the return occurred.

RC

specifies a return code that is to be placed in the 12 low-order
bits of register 15 (the return code register). The value of the
absolute expression should be a multiple of 4 in the range from 0
through 4092. ;

If (15) is written, the return code must have been loaded into
register 15 before execution of this macro-instruction.

If this operand is omitted, register 15 is loaded as specified by
the reg; and reg, operand values.

This operand has no effect if the macro-instruction is executed by
an asynchronous exit routine. The control program, upon receiving
control, replaces the return code in register 15 with the original
contents of the register.

CAUTIONS: A BR 14 instruction is always the 1last instruction in the
RETURN macro-expansion. Register 14 (the return register) must be
restored by means of the first operand of the macro-instruction; or, it
must be correctly loaded before the macro-instruction is executed.

The RETURN macro-instruction can be used to terminate a synchronous
exit routine. 1In this case, the first and second operands of the
macro-instruction should not be written; the RETURN macro-instruction
results in only a BR 14 instruction and may optionally load a return
code.

A RETURN macro-instruction with no operands can be used to return
from an asynchronous exit routine; it results in only a BR 14
instruction.

The control program saves registers 2 through 14 before giving
control to a synchronous exit routine; it saves registers 14 through 2
(14, 15, 0, 1, and 2) before giving control to a SPIE routine, and saves
all registers before giving control to any other asynchronous exit
routine. The control program also reloads these registers when a return
is made from the exit routine.

A RETURN macro-instruction should not be issued by the highest 1level
program of a task that has incomplete subtasks; if it is, the task and
all its incomplete subtasks are terminated abnormally. Also, a RETURN
macro-instruction should not be issued by a program that includes exit
routines whose execution may be required at a later time; if issued, the
RETURN macro-instructiéon may cause deletion of the program and abnormal
termination on a subsequent type